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Abstract The development of fuel cells as clean-energy
technologies is largely limited by the prohibitive cost of
the noble-metal catalysts needed for catalyzing the oxy-
gen reduction reaction (ORR) in fuel cells. A fundamen-
tal understanding of catalyst design principle that links
material structures to the catalytic activity can accelerate
the search for highly active and abundant bimetallic
catalysts to replace platinum. Here, we present a first-
principles study of ORR on Ag12Cu cluster in alkaline
environment. The adsorptions of O2, OOH, and OH
on Cu-doped Ag13 are stronger than on Ag13. The
d-band centers of adsorption sites show the Cu-doping
makes d-electrons transferred to higher energy state, and
improves O2 dissociation. ORR processes on Ag12Cu
and Ag13 indicate Cu-doping can strongly promote
ORR, and ORR process can be better preformed on
Ag12Cu than on Ag13. For four-electron transfer, the
effective reversible potential is 0.401 V/RHE on Ag12Cu
in alkaline medium.

Keyword Catalyst . Cluster . Density functional theory
(DFT) . Oxygen reduction reaction (ORR) . Nanoalloy

Introduction

The oxygen reduction reaction (ORR) onmetal plays a crucial
role in electrochemical energy conversion [1]. However, there
are several challenging issues worth being studied in catalytic
reactions of fuel cells [2–4], for example, the high price for Pt
metal which is the best catalyst for H2 and O2 dissociation.
However, the high cost of Pt has sparked a search for a Pt
substitute or new ways of reducing the quantity of Pt required.
For example, in contrast to Au bulk materials, Au nanoparti-
cles can be used in many selective oxidation reactions [5–7].
Recently, the supported Pt-based alloy catalyst has received
great attention because of its wide variety of advantages.
Some alloyed nanoparticles, including AuPd nanoalloys [8],
NaAu clusters [9], MAu (M=W, Pb, Zr, Sc, Ca) clusters [10],
CuAu nanoparticles [11], and AuAg nanoalloys [12] have
been disclosed in catalytic activity by first-principles calcula-
tions. Moreover, a number of highly stable mixed clusters
have been produced in the laboratory, which makes it possible
to design and apply the alloyed nanoparticles in catalytic
chemistry [13, 14]. These indicate that different alloyed con-
figurations could have some extra effects on catalytic process-
es. It would be interesting to further explore some alloyed
nanoclusters of inexpensive metals for ORR. At the same
time, these results emphasize the importance of understanding
the catalytic property of bimetallic nanocatalysts.

The activation energy in electron transfer processes result
from the interplay between solvent reorganization, orbital
overlap and reaction free energy [15]. Though it is difficult
to simulate process for all contained information, multiscale
modeling techniques became recently available. de Morais
et al. have simulated the ORR in a Pt(111)-based PEMFC
[16], and Goddard III et al. have reported Multi-paradigm
multi-scale simulations for fuel cell catalysts and membranes
[17]. Our research is focused on intrinsic metal effects. We
ignore other effects, such as support. Although such effects are
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still important [18–20], we hope to gain a better understanding
of the ORR on bare nanoparticles by systematically investi-
gating how the alloyed composition affects the ORR. A clear
understanding of the reaction mechanism is essential for val-
idating the catalytic properties of new materials. The O2

dissociation reaction is the rate determining step.
In this paper, we would like to report our recent study of

O2, OH, and OOH adsorbed on AgCu clusters using cluster
model calculation. We selected Cu-doped Ag cluster as a new
catalyst for ORR. ORR activity of the pure Ag or Cu is lower
than Pd or Pt because O2 adsorption energy on Ag is too low,
while O2 adsorption energy on Cu is too high [4]. Another
reason is that the alloyed nanocatalyst decreases catalyst poi-
soning, in comparison with Pt-based catalyst [21]. Some
experiments have predicted alloyed CuAg is an ORR catalyst
[22–24]. We expect that each property of Ag and Cu affects
O2 adsorption on an AgCu nanoparticle and leads AgCu
nanoparticle to have proper adsorption strength and to become
a good catalyst for ORR. Moreover, Ag and Cu are much less
expensive than Pt or Pd [25]. Although most calculations
[12–16] on crystalline surface processes were done on the
slab model, for our purpose, it is hard to apply this approach
to discuss the pure local electronic effect of alloy cluster due to
the lack of periodicity. Moreover, it allows a more direct
analysis of the bonding character for local orbital, as discussed
by Huang et al. [26]. Hence, the cluster model is a suitable
model to be used in this study. In the direct four-electron
reduction mechanism of ORR process, the O2, OH, and
OOH adsorbates are three important intermediates. It has been
recognized that the origin of slow ORR kinetics is the block-
age of O2 adsorption sites by the formation of O and OH [27,
28]. Hence the study of O, OH, and OOH adsorptions are
important for ORR research. The main objective of this study
is to show how Cu-doping affects ORR on Cu-doped Ag
clusters for fuel-cell cathode.

Methods

We simulated the ORR processes starting with the first elec-
tron transformation, following the work on a Pt(111) byWang
et al. [29–31]. These results suggest that, in an alkaline envi-
ronment [32–35] a decomposition is primarily driven by the
chemisorption of hydroxyl, in line with Yeager’s dissociative
chemisorption proposal for the first step of ORR. A unified
mechanism for the first reduction step, which combines
Damjanovic’s [28] proton participation in the first electron
reduction step and Yeager’s dissociative chemisorption of O2

is summarized as follows:

O2 þ �→ � −O−O ð1Þ

�−O−Oþ e− þ H2O→ � −O−O−Hþ OH− ð2Þ

or

O2 þ � þ e−→ � −O−O− ð3Þ

�−O−O− þ H2O→ � −O−O−Hþ OH− ð4Þ

where the asterisk represents a chemisorption site on clus-
ters. In this step, we set O2, OOH, or OH near the adsorption
site of Ag12Cu (or Ag13) cluster at a distance of 3 Å. The
optimized structures for O2, OOH, or OH adsorption (ads) to
cluster were obtained through structural optimization calcula-
tions. Then the succeeding electron transforming reactions
were simulated by continuing to add H atoms (the joint efforts
of one e− from anode and one H+ from H2O molecule) in the
system at the initiatory stage. The optimized structures for
OOH, OH+OH, or OH adsorption (ads) to cluster were ob-
tained through structural optimization calculations. For each
step, we obtained the optimized structure, and calculated the
adsorption energy [36] (bond strength) for those molecules on
the Ag12Cu. It is well-known that, overall, ORR can proceed
by a two-step two-electron pathway with the formation of
hydrogen peroxide or by a more efficient four-electron pro-
cess to combine oxygen with electrons and protons directly
from dissociated H2O. Hence, the ORR on Ag12Cu could
follow either a two-electron pathway or four-electron process,
which will be examined in the simulation of subsequent
electron transforming reactions. The succeeding electron
transforming reactions were simulated by continuing to add
H atoms in the system in the first two electron pathway. Then,
we simulated the electron transforming reactions by continu-
ing to add electrons into the modes and found the desorption
of OH− ions. The reversible potential of each reaction step on
the Ag12Cu was also calculated following the procedure de-
scribed by Roques and Anderson [37].

For an electrochemical reaction with reactants Ox and
products Red:

Ox þ e− U0
� �

→−Red ð5Þ
the relationship between the Gibbs free energy for a reduc-

tion reaction in aqueous (aq) solution and the reversible po-
tential, U0, is [37]:

U 0 ¼ ΔG0=nF ð6Þ

where ΔG0 is the Gibbs free energy change of Eq. 5 (The
free energy for a reaction is calculated as follows:ΔG=ΔE+
ΔZPE−TΔS. Here the reaction energy, ΔE, and the zero
point energy, ΔZPE, are obtained from DFT calculations,
while the change in entropy, due to loss of translational
degrees of freedom, is obtained from standard tables [38].)
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For an electrochemical reaction on a catalyst surface with
reactants Ox and products Red:

catalystð Þ−Ox þ e− Uð Þ→− catalystð Þ−Red ð7Þ

U ¼ U0 þ Er−E0
r

� �
=nF ð8Þ

ΔEr, is equal to the total adsorption energy of the reactants
Eads(Ox), minus the total adsorption energy of the products
Eads(Red): [39, 40].

So, the reversible potential on catalyst surface U is a
function of adsorption energy and standard reversible reduc-
tion potentialsU0, for the reactions in bulk solutions: [39, 40].

U ¼ U0 þΔEr=nF ð9Þ

where U0 is the standard solution-phase potential. Thus, if
we know the reversible potential in an aqueous solution of a
redox reactionU0 (from experimental or theoretical investiga-
tions), we will be able to calculate the reversible potential on a
specific catalyst surface U just by the knowledge of the
adsorption energies of each species involved in the reaction.
It should be noticed that the effect of charge has been consid-
ered by using the known reversible potential in an aqueous
solution of a redox reaction U0 [41] in the ORR. The predic-
tions are very close to the experimental results [37, 39, 40].

Geometric structures of the Cu-doped and undoped Ag
clusters, with adsorbed O2, O2

−, OOH, OOH−, and OH, were
optimized using an unrestricted density functional theory
(DFT) method within the general gradient approximation in
the form of RPBE (revised Perdew-Burke-Ernzerh) of func-
tional [42]. The RPBE was specialized for oxidation and
numerous other surface chemical reaction involving hydro-
carbons. Semicore pseudopotential was opted together with
the double numerical plus polarization (DNP) basis set for the
geometric optimization [43–46]. The adsorption energies of
adsorbates on the clusters were calculated according to the
formula:

ΔEads ¼ E clusterþadsorbateð Þ−E clusterð Þ−E adsorbateð Þ ð10Þ

All computations were performed using the DMol3 soft-
ware package [43, 44]. During geometrical optimization, the
basis set cutoff was chosen to be 5 Å. The convergence
tolerances for the geometry optimization were set to 10−5 Ha
for the energy, 0.002 Ha/Å for the force, and 0.005 Å for the
displacement. The electronic SCF tolerance was 10−6 Ha. A
Fermi smearing of 0.005 Ha was used in all of the calcula-
tions. The DFT semicore pseudopotential proposed by Delley
in 2002 [47] was employed to treat the core electrons.

Results and discussion

Adsorptions of O2, OOH, OH

The catalytic properties of AgCu nanoparticles indicate
alloyed Ag12Cu is a good candidate for an ORR catalyst
[48]. The work shows O2 molecule prefers to adsorb on the
site with Ag and Cu atoms of AgCu cluster, too. We selected
coh-Ag13 and Cu-doped Ag clusters as fuel-cell cathode to
study ORR. The structures of Ag13 and Ag12Cu are shown in
Fig. 1. The d(Ag-Ag) of Ag13 cluster is 2.949 Å. The d(Ag-
Ag) of Ag12Cu cluster is in the range from 2.912 to 3.006 Å.
and the d(Ag-Cu) of Ag12Cu cluster is about 2.728 Å. The
distance between shell atom and core atom with the range
from 2.729 Å to 2.986 Å in Ag12Cu is shorter than in Ag13,
which indicates Cu-doping decreases the size of cluster.

We determine the ground state of the metal clusters with the
adsorbed species considered by checking their total energies
with different spin multiplicity in Fig. S1 (see Supporting
materials). The calculations indicate the ground state (themost
stable state) of all the metal clusters with the adsorbed species
is under the spin number with 0. Figure 2 and Table 1 display
adsorption energies and d(O−O) of adsorbates on Ag13 and
Ag12Cu for ORR process. The adsorption energies of O2,
O2

−, OOH, OOH−, 2OH, and OH on Ag13 are −0.216,
−0.259, −1.144, −0.980, −4.594, −2.958 eV, respectively.
The adsorption energies of O2, O2

−, OOH, OOH−, 2OH, and
OH on Ag12Cu are −1.019, −1.154, −1.697, −1.304, −5.405,

Ag13 Ag13

Ag12Cu Ag12Cu

Fig. 1 the structures (left) and bulk lattice parameters (right) of optimized
Ag13 and Ag12Cu clusters
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−3.312 eV, respectively. It is obvious that the adsorption
energy of O2 (O2

−, OOH, OOH−, 2OH, or OH) on Ag12Cu
is lower than that on Ag12 in Fig. 2a. (The adsorption energies
of O2, OOH, and OH on Ag13 and Ag12Cu compared with the
ones obtained with Pt13 nanoclusters have been showed in

Fig. S2 of Supporting materials.) So Cu-doping improves the
adsorptions of adsorbates in ORR. That is to say, Cu-doping
offers great conveniences for ORR. The other, d(O−O) (bond
length) of O2 on Ag13 is 1.416 Å, and d(O−O) of O2 on Ag12Cu
is 1.428 Å. The d(O−O) of O2 on Ag12Cu is longer than that on
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Fig. 2 Adsorption energies a of
the adsorbates on Ag13 and
Ag12Cu and the O−O bond length
(d(O−O)) for ORR process

Table 1 Adsorption eEnergy and d(O−O) for O2, OOH, OH on the Ag13 andAg12Cu

ORR pathway *O2 *O2
− *OOH *OOH− *OH+*OH *OH

Ag13 Adsoption energy (eV) −0.216 −0.259 −1.144 −0.980 −4.594 −2.958
d(O−O) (Å) 1.416 1.492 1.522 1.517 3.047

Ag12Cu Adsoption energy (eV) −1.019 −1.154 −1.697 −1.304 −5.405 −3.312
d(O-O) (Å) 1.428 1.508 1.536 1.543 4.299
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Ag12. The d(O−O) of all the adsorbates on Ag12Cu is also
longer than that on Ag13 as shown in Fig. 2b. Cu-doping
enhances O−O dissociation in ORR process, which is propi-
tious to ORR processes. The possible reason is that d-band
center [49, 50] of adsorption site on Ag12Cu (−1.507 eV) is
nearer Fermi level than that on Ag13 (−3.078 eV), as shown in
Fig. 3. The d-band center on Ag12Cu is nearer than on Ag13,
which indicates Cu-doping improve energy level of d-
electrons in the atoms located on adsorption site. According
to d-band center theory [49, 50], the Cu-doped improves d-

electrons of the atoms on adsorption site near Fermi level, and
make d-electrons transferred to a relatively higher energy
level, these indicates it is possible for Ag12Cu clusters to
perform more effective catalysis. The changing of d-band
center with Cu-doping is helpful for d-electrons to locate in
higher energy state, and give more opportunities for s-
electrons located in lower energy state. Cu-doping improve
the energy level, making the silver-copper cluster perform
more effective catalysis. The d-band center can be used as
an indicator of the chemical activity of Ag-Cu clusters in
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Fig. 3 Local density of states and
d-band centers of three atoms
located at adsorption site, and the
number of these atoms is 2, 3, 10,
in Ag13 and 1, 2, 3 in Ag12Cu as
in Fig. 1, respectively

Fig. 4 Optimized structure of
each electron transformation in
oxygen reduction reaction: a
adsorbs on the Ag12Cu/Ag13, b
OOH adsorbs on the Ag12Cu, and
one OH− group is generated, c O
−O bond is broken, and one OH−

group is generated, d twoOH− are
generated, and Ag−O (or Cu-O)
bond is broken
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addition to that it has proved to be highly valuable in the
interpretation of results on metallic surfaces. Indeed, the d-
band center is not formally a chemical reactivity descriptor,
the d-band center theory in principle can only be applied to
periodic metal systems, and is not insensitive to the changing
atom composition and size for bimetallic clusters [51, 52]. So
Cu-doping improves O2 dissociation and ORR process
spontaneously.

Catalytic pathways of ORR on Ag13 and Ag12Cu

We first studied catalytic pathways of Ag13 and Ag12Cu. As
mentioned above, there are two possible reaction pathways
in the first electron transfer: (i) direct O2 adsorption and (ii)
intermediate molecule OOH adsorption. O2 can adsorb on
Ag or Ag12Cu in Fig. 4a. The adsorbed O2 can further
interact with an H2O molecule and one e− to form an
adsorbed OOH. We first simulated the ORR processes be-
ginning with the first electron transformation in an alkaline
environment, in which process an intermediate molecule
OOH has been formed. The simulation shows that OOH
far from the Ag13/Ag12Cu can adsorb on the Ag13 (or on the
site with Cu+2Ag atoms of AgCu) as shown Fig. 4b (or
Fig. 4b’). The dissociation energy on the adsorption site
with Ag and Cu atoms is in the range from 0.65 eV to
0.9 eV, [48] while adsorption energies of OOH on Ag12Cu
is below −1.0 eV. So an activation barrier has to be
surpassed to achieve the dissociation of the O2 molecule.
It is possible for ORR process to occur spontaneously.
However, the O2 adsorption energy is −1.019 eV, over 1.5
times smaller than that for OOH adsorption (−1.6 eV) for

Ag12Cu, and the O2 adsorption energy is −0.216 eV, over
five times smaller than that for OOH adsorption (−1.0 eV)
for Ag13. This implies that OOH adsorption (in Fig. 4b and
b’) is a more favorable reaction in the first electron transfer.
When adding an H2O molecule and near the oxygen atom
that attaches to the negative Ag12Cu or Ag13, a bond is
formed between the oxygen and the hydrogen atoms. At
the same time, the O−O bond is broken, resulting in the
formation of two hydroxide molecules (2OH), as shown in
Fig. 4c or c’. During this process, the distance between the
two O atoms changed from an initial value of 1.428 Å to a
value of 4.99 Å on Ag12Cu (from an initial value of 1.416 Å
to a value of 3.047 Å on Ag13). The generated OH groups
are bonding to the Ag12Cu (or Ag13). This is a four-electron
reaction because the O−O bond breaks during the reaction
[53, 54]. After adding two more e− to the reaction system,
two OH− are formed and completely departed from the
Ag12Cu or Ag13 in Fig. 4d (or Fig. 4d

’). The third and fourth
electrons were then transformed in the oxygen reduction
reaction. Finally, after the removal of the OH−, the Ag13 (or
Ag12Cu) is ready for the next reaction cycle.

The Cu-doping also influence the reaction pathway. In
addition to the reaction path listed in Table 2 (path ③ in
Fig. 5), different reaction routes and catalytic behaviors
were observed for Ag13 and Ag12Cu. The identified reaction
pathways include two-electron transfer (path ① in Fig. 5)
and four electron transfer (paths②–⑤). Path① is a typical
two-electron transfer reaction, while all other reaction paths
identified are four-electron transfer reactions. The two-
electron process usually is much less efficient than a four-
electron one [55]. Path② is similar to that listed in Table 2,

Table 2 Adsorption energy difference (ΔEr) and reversible potentials (U) of ORR step on the Ag13 and Ag12Cu (U
0 ref [29])

Reaction order Chemical reaction Adsorption energy difference
ΔEr(eV)

Reversible potential U0(V/RHE) Reversible potential U
(V/RHE)

Ag13 Ag12Cu Ag13 Ag12Cu

1 O2+H2O+2e−→*OOH−+OH− 0.980 1.304 −0.076 0.414 0.576

2 *OOH−+H2O+2e−→3OH− −0.980 −1.304 0.878 0.388 0.226

Overall O2+2H2O+4e−→4OH− 0 0 0.401 0.401 0.401

Fig. 5 Reaction scheme of ORR on Ag13 and Ag12Cu where path A presents an intermediate OOH adsorption mechanism, and path B a direct O2

adsorption mechanism, and ①–⑤ represent five reaction pathways after OOH adsorption, ref [31]
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the introduction of a hydrogen results in O−O bond break-
ing and formation of two OHmolecules. One adsorbs on the
same site as the OOH on Ag13 (or Ag12Cu), while the other
desorbs from adsorption site. Finally, the OH combines with
e− to form OH−. The overall reaction reversible potential is
0.401. Path ④ is also similar to that listed in Table 2, but
here, two OH molecules can be desorbed from adsorption
site on Ag12Cu (or Ag13). In the last path (path ⑤), O−O
bond breaking generates an adsorbed O and one OH− ion.
H2O further reacts with the adsorbed Owith negative charge
to form OH ion. The overall reversible potential is 0.401 V
for Ag13 (or Ag12Cu), which is equal to the standard revers-
ible potential U0 of oxygen and hydrogen redox reactions.
This value corresponds to the standard Gibbs energy of
reaction,ΔG0=1.604 eV, and is the maximum energy avail-
able to do electrical work.

Table 1 also displays the distance of O−O bond for
*OH+*OH coadsorption. For Ag13, the d(O−O) is 3.047 Å,
and one H atom is sited between two O atoms in Fig. 4c,
then H-O-H-O possibly generates. So path① possibly takes
place. On the contrary, For Ag12Cu, d(O−O) with 4.229 Å is
longer and makes O−O bond dissociated. Furthermore,
there is not a H atom between two O atoms in Fig. 4c. So
path① is impossible for Ag12Cu. Adsorption energy of OH
on Ag12Cu (or Ag13) in Fig. 2 shows OH group adsorbs on
Ag12Cu (or Ag13) spontaneously. So that it is impossible for
Ag12Cu and Ag13 as a fuel-cell cathode to perform ORR
along path② and④. The path③ and⑤ processes possibly
take place on Cu-doped and undoped Ag clusters. From
above analysis, we can see that Cu-doped Ag cluster is
better used to make fuel-cell cathode due to efficient four-
electron process.

Reversible potential of Ag12Cu

The above chemical reactions, adsorption energy difference
between reactants and products, standard reversible potential,
and reversible potential on the catalyst surface are listed in
Table 2. For the step of electron transformation, the reversible
potential is positive, suggesting that the system moves to a
more stable state during the reactions. So, the four-electron
reaction can spontaneously take place on AgCu cluster. Of all
the reaction steps, OOHmolecular adsorption on the cluster is
one of the most important steps for the catalytic reaction of
oxygen reduction, because it determines whether a metal
cluster electrode has catalytic activity or not. The O−O bond
break is another key necessary step for the four-electron
reaction. The reversible potential for overall ORR is 0.401 V
(RHE) in alkaline medium, which is consistent with standard
reversible potential of ORR [56, 57]. It should be noted that,
during the ORR process, a 2Ag+Cu site is one active site for
the ORR.

Conclusions

The DFTmethodwas used to study the effect of Cu-doping on
ORR in fuel cells. Simulation results indicates that the Cu-
doping strongly affects the formation of the intermediate
molecules in ORR, including OOH (or OH) adsorption, O
−O bond breaking, and OH− formation. The Cu-doping en-
hances the catalytic capability of the bimetallic cluster by
changing the d-band center of adsorption site and reaction
pathways. For four electron transfer, the predicted effective
reversible potential for Ag12Cu is 0.401 V/RHE in alkaline
medium, which is consistent with the experimental results.
Engineering materials structures can promote catalytic capa-
bility of pure nanoparticles by properly doping heterogeneous
elements.
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